国科学院高能物理研究所

Precise Prediction of Higgs Production

Zhao Li IHEP-CAS

IAS program on High Energy Physics @HKUST

Jan 25 2016

2012 July 4th Higgs announced

H	Higgs Of all the collisions over three years of LHC operation, only one in 5 billion produced the elusive particle.	1.2 million
*	Collisions The LHC produced roughly 90 billion particle collisions a day over the period of operation.	5.8 quadrillion
İİİ	Physicists Collaborators from more than 40 countries worked on two of LHC's detectors, ATLAS and CMS.	6,600
\$\$\$	Dollars The cost of running the LHC for three years came to about \$62 per Higgs.	74 million
-	Power (MW) The electric power required to run the LHC and its experiments was enough to power about 50,000 homes.	50
C	Laps per second Traveling near the speed of light, protons in the LHC travel nearly 300,000 kilometers per second.	11,245

Properties of Higgs

100% satisfied?

Higgs Xsection reconstruction

0

 ≥ 1

≥3

= 0

= 1

 ≥ 2

 $N_{\rm jets}$

= 2

Les Houches wishlist

Process	known	desired	motivation
Н	d\sigma @ NNLO QCD d\sigma @ NLO EW finite quark mass effects @ NLO	d\sigma @ NNNLO QCD + NLO EW MC@NNLO finite quark mass effects @ NNLO	H branching ratios and couplings
H+j	d\sigma @ NNLO QCD (g only) d\sigma @ NLO EW	d\sigma @ NNLO QCD + NLO EW finite quark mass effects @ NLO	H p_T
H+2j	\sigma_tot(VBF) @ NNLO(DIS) QCD d\sigma(gg) @ NLO QCD d\sigma(VBF) @ NLO EW	d\sigma @ NNLO QCD + NLO EW	H couplings
H+V	d\sigma(V decays) @ NNLO QCD d\sigma @ NLO EW	with H→bb @ same accuracy	H couplings
t∖bar tH	d\sigma(stable tops) @ NLO QCD	d\sigma(NWA top decays) @ NLO QCD + NLO EW	top Yukawa coupling
HH	d\sigma @ LO QCD finite quark mass effects d\sigma @ NLO QCD large m_t limit	d\sigma @ NLO QCD finite quark mass effects d\sigma @ NNLO QCD	Higgs self coupling

Higgs Pair Production

HH d\sigma @ LO QCD finite quark d\sigma @ NLO QCD finite quark Higgs self coupling				
mass effects d\sigma @ NLO QCD large m_t limit d\sigma @ NNLO QCD	нн	d\sigma @ LO QCD finite quark mass effects d\sigma @ NLO QCD large m_t limit	d\sigma @ NLO QCD finite quark mass effects d\sigma @ NNLO QCD	Higgs self coupling

Higgs Self Coupling

SM $\lambda_{HHH} = 3M_H^2/M_Z^2$

Higgs Self Coupling

SM $\lambda_{HHH} = 3M_H^2/M_Z^2$

$$\lambda_{hhh} = 3\cos 2\alpha \sin(\beta + \alpha) + 3\frac{\epsilon}{M_Z^2}\frac{\cos \alpha}{\sin \beta}\cos^2 \alpha$$
$$\epsilon = 3G_F M_t^4 / (\sqrt{2}\pi^2 \sin^2 \beta)$$

gg→HH @ NLO and beyond

First attempt since 1998 [hep-ph/9805244]

Neutral Higgs-boson pair production at hadron colliders: QCD corrections

S. Dawson, S. Dittmaier, and M. Spira Phys. Rev. D 58, 115012 – Published 6 November 1998

We have presented a complete calculation of the two-loop QCD corrections to neutral-Higgs pair production at the LHC via gluon fusion in the limit of a heavy top quark. This approximation is at least reliable if the invariant mass of the produced Higgs-boson pair is below the *tt* threshold of the mediating top-quark loops. We have analyzed the results

gg→HH @ NLO and beyond (Further attempts)

On the Higgs boson pair production at the LHC

Jonathan Grigo, Jens Hoff (KIT, Karlsruhe, TTP), Kirill Melnikov (Johns Hopkins U.), Matthias Steinhauser (KIT, Karlsruhe, TTP)

May 31, 2013 - 19 pages

Nucl.Phys. B875 (2013) 1-17

1/Mt corrections are large and poorly convergent

Higgs pair production at the LHC with NLO and parton-shower effects

R. Frederix, S. Frixione (CERN), V. Hirschi (SLAC), F. Maltoni, O. Mattelaer (Louvain U., CP3), P. Torrielli (Zurich U.), E. Vryonidou (Louvain U., CP3), M. Zaro (Paris U., IV & Paris, LPTHE

Jan 28, 2014 - 8 pages

Phys.Lett. B732 (2014) 142-149

NLO matching to PS

gg→HH @ NLO and beyond (Further attempts)

Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO

F. Maltoni, E. Vryonidou (Louvain U., CP3), M. Zaro (Paris U., IV & Paris, LPTHE)

Aug 27, 2014 - 24 pages

JHEP 1411 (2014) 079

Higgs-gluon effective field theory is used

Higgs boson pair production: top quark mass effects at NLO and NNLO

Jonathan Grigo (KIT, Karlsruhe & KIT, Karlsruhe) , Jens Hoff (DESY, Zeuthen) , Matthias Steinhauser (KIT, Karlsruhe & KIT, Karlsruhe)

Aug 4, 2015 - 19 pages

Nucl.Phys. B900 (2015) 412-430

Heavy top quark mass approximation is used for NLO & NNLO

However...

Large Mt Approx.

Failed approximation

m(H,H)

Same problem in Higgs production

$$Mt >> M(H+j)$$

Pt(j) cannot be large

14

Large Mt approx. must be removed for Higgs investigations

Avaiable Algorithms

Analytical approach:

Simple processes only, i.e. not too many scales. No breakthrough after more than ten years struggle.

Numerical approach:

Conventionally too slow. Popular algorithms are "Sector Decomposition" and "Mellin-Barnes"

$$I = \int_{0}^{1} dx \int_{0}^{1} dy \, x^{-1-\epsilon} y^{-\epsilon} (x + (1-x)y)^{-1}$$

x
$$I = \int_{0}^{1} dx \, x^{-1-\epsilon} \int_{0}^{1} dt \, t^{-\epsilon} (1 + (1-x)t)^{-1}$$

$$+ \int_{0}^{1} dy \, y^{-1-2\epsilon} \int_{0}^{1} dt \, t^{-1-\epsilon} (1 + (1-y)t)^{-1}$$

$$G_{l_1\cdots l_R}^{\mu_1\cdots \mu_R} = \int \prod_{l=1}^L d^D \kappa_l \, rac{k_{l_1}^{\mu_1}\cdots k_{l_R}^{\mu_R}}{\prod_{j=1}^N P_j^{
u_j}ig(\{k\},\{p\},m_j^2ig)}\,,$$
 $d^D \kappa_l = rac{\mu^{4-D}}{i\pi^{rac{D}{2}}} \, d^D k_l\,, \qquad P_jig(\{k\},\{p\},m_j^2ig) = ig(q_j^2 - m_j^2 + i\deltaig)\,,$

Feynman parameterization

$$\frac{1}{\prod_{j=1}^{N} P_j^{\nu_j}} = \frac{\Gamma(N_{\nu})}{\prod_{j=1}^{N} \Gamma(\nu_j)} \int_0^\infty \prod_{j=1}^{N} dx_j \, x_j^{\nu_j - 1} \delta\left(1 - \sum_{i=1}^{N} x_i\right) \frac{1}{\left[\sum_{j=1}^{N} x_j P_j\right]^{N_{\nu}}},$$

where $N_{\nu} = \sum_{j=1}^{N} \nu_j$, leads to

$$egin{aligned} G_{l_1\cdots l_R}^{\mu_1\cdots \mu_R} &= rac{\Gamma(N_
u)}{\prod_{j=1}^N \Gamma(
u_j)} \int_0^\infty \prod_{j=1}^N dx_j \, x_j^{
u_j-1} \deltaigg(1-\sum_{i=1}^N x_iigg) \int d^D \, \kappa_1\cdots d^D \kappa_L \ & imes k_{l_1}^{\mu_1}\cdots k_{l_R}^{\mu_R} \Bigg[\sum_{i,j=1}^L k_i^\mathrm{T} M_{ij} k_j - 2\sum_{j=1}^L k_j^\mathrm{T} \cdot Q_j + J + i\delta\Bigg]^{-N
u}, \end{aligned}$$

Integrate out loop momenta

$$G_{l_1 \cdots l_R}^{\mu_1 \cdots \mu_R} = (-1)^{N_{
u}} rac{1}{\prod_{j=1}^N \Gamma(
u_j)} \int_0^\infty \prod_{j=1}^N dx_j \, x_j^{
u_j - 1} \delta\left(1 - \sum_{l=1}^N x_l
ight)$$

$$\times \sum_{m=0}^{[R/2]} \left(-\frac{1}{2} \right)^m \Gamma(N_{\nu} - m - LD/2) [(\tilde{M}^{-1} \otimes g)^{(m)} \tilde{l}^{(R-2m)}]^{\Gamma_1, \dots, \Gamma_R}$$

$$\times \frac{\mathcal{U}^{N_{\nu} - (L+1)D/2 - R}}{\mathcal{F}^{N_{\nu} - LD/2 - m}},$$
(7)

where

$$\mathcal{F}(\mathbf{x}) = \det(M) \left[\sum_{j,l=1}^{L} Q_j M_{jl}^{-1} Q_l - J - i\delta \right],$$
(8)

$$\mathcal{U}(\mathbf{x}) = \det(M)\,, \quad ilde{M}^{-1} = \mathcal{U}M^{-1}\,, \quad ilde{l} = \mathcal{U}v$$

$$egin{aligned} \mathcal{U}(\mathbf{x}) &= \sum_{T\in\mathcal{T}_1} \left[\prod_{j\in\mathcal{C}(T)} x_j
ight], \ \mathcal{F}_0(\mathbf{x}) &= \sum_{\hat{T}\in\mathcal{T}_2} \left[\prod_{j\in\mathcal{C}(\hat{T})} x_j
ight](-s_{\hat{T}}), \ \mathcal{F}(\mathbf{x}) &= \mathcal{F}_0(\mathbf{x}) + \mathcal{U}(\mathbf{x}) \, \sum_{j=1}^N x_j m_j^2\,. \end{aligned}$$

$$egin{aligned} \mathcal{U} &= x_{123}x_{567} + x_4x_{123567} \,, \ \mathcal{F} &= (-s_{12})(x_2x_3x_{4567} + x_5x_6x_{1234} + x_2x_4x_6 + x_3x_4x_5) \ &\quad + (-s_{23})x_1x_4x_7 + (-p_4^2)x_7(x_2x_4 + x_5x_{1234}) \,, \end{aligned}$$
 where $x_{ijk\cdots} = x_i + x_j + x_k + \cdots$ and $s_{ij} = (p_i + p_j)^2.$

First generate primary sectors to eliminate Delta function

$$\int_0^\infty d^N x = \sum_{l=1}^N \int_0^\infty d^N x \prod_{j
eq l \ j
eq l}^N heta(x_l \ge x_j) \, .$$

$$x_j = egin{cases} x_l t_j & ext{ for } j < l\,, \ x_l & ext{ for } j = l\,, \ x_l t_{j-1} & ext{ for } j > l \ \end{cases}$$

$$G_l = \int_0^1 \prod_{j=1}^{N-1} dt_j \, \frac{\mathcal{U}_l^{N_\nu - (L+1)D/2}(\mathbf{t})}{\mathcal{F}_l^{N_\nu - LD/2}(\mathbf{t})} \,, \quad l = 1, \dots, N \,.$$

Determine a sub-set of parameters ti

$$\mathcal{S} = \{t_{\alpha_1}, \ldots, t_{\alpha_r}\}$$

Then divide into r sub-sectors

$$\prod_{j=1}^{r} \theta(1 \ge t_{\alpha_j} \ge 0) = \sum_{k=1}^{r} \prod_{\substack{j=1\\j \ne k}}^{r} \theta(t_{\alpha_k} \ge t_{\alpha_j} \ge 0) \,.$$
$$t_{\alpha_j} \to \begin{cases} t_{\alpha_k} t_{\alpha_j} & \text{for } j \ne k \,, \\ t_{\alpha_k} & \text{for } j = k \,. \end{cases}$$

$$G_{lk} = \int_0^1 \left(\prod_{j=1}^{N-1} dt_j t_j^{a_j - b_j \epsilon}\right) \frac{\mathcal{U}_{lk}^{N_\nu - (L+1)D/2}}{\mathcal{F}_{lk}^{N_\nu - LD/2}}, \quad k = 1, \dots, r.$$

$$\mathcal{U}_{lk_1k_2\cdots}=1+u(\mathbf{t})\,,\quad \mathcal{F}_{lk_1k_2\cdots}=-s_0+\sum_eta(-s_eta)f_eta(\mathbf{t})\,,$$

All the coefficients of divergences are finite (complicated).

Diagram	Α	В	С	S	Х	Н	This	Exponential
							method	S.D.
Bubble	2	2	2	2^*	2		2	2
Triangle	3	3	3	3*	3		3	3
Box	12	12	12	12	12		12	8
Tbubble	58	48	48	48*	48		48	36
Double box, $p_i^2 = 0$	775	586	586	362	293	282	266	106
Double box, $p_4^2 \neq 0$	543*	245*	245*	230*	192*	197	186	100
Double box, $p_i^2 = 0$	1138	698	698	441*	395		360	120
nonplanar								
D420	8898	564	564	180	\mathbf{F}		168	100
3 loop vertex (A8)	4617*	1196*	1196*	871*	750*	684	684	240
Triple box	Μ	114256	114256	22657	10155		6568	856

Quasi-Monte-Carlo

$$I(f) = \int_0^1 d^s x f(\vec{x})$$

1

0.8

+

1

25

Quasi-Monte-Carlo

26

Improve Sector Decomposition

Quasi-Monte-Carlo algorithm

Parallel (GPU) technique

Planar Two-Loop Master Integral

	Vegas/CPU	QMC/GPU
P_2	$-7.959 \pm 0.009 - 10.586i \pm 0.009i$	$-7.949 \pm 0.003 - 10.585i \pm 0.005i$
P_1	$3.9 \pm 0.1 - 28.1i \pm 0.1i$	$3.831 \pm 0.005 - 28.022i \pm 0.005i$
P_0	$-3.9 \pm 0.8 + 92.3i \pm 0.8i$	$-4.63 \pm 0.07 + 92.13i \pm 0.07i$
Integration Time	45540s	19s

Non-Planar Two-Loop Master Integral

	Vegas/CPU	QMC/GPU
P_2	$-3.848 \pm 0.004 + 0.0005i \pm 0.003i$	$\left -3.8482 \pm 0.0007 + 0.0004i \pm 0.0003i\right $
P_1	$3.81 \pm 0.03 - 6.41i \pm 0.03i$	$3.83 \pm 0.02 - 6.40i \pm 0.02i$
P_0	$77.2 \pm 0.2 + 20.1i \pm 0.2i$	$77.2 \pm 0.1 + 19.9i \pm 0.1i$
Integration Time	54290s	20s

gg→HH @NLO with finite top mass

- 2-loop virtual contribution totally has 256 amplitudes, 44 integral families/topologies.
- 16041 scalar integrals are obtained.
- IBP reduction is the bottleneck. Large amount of calculation resource (money) is needed.
- Some of the integral families can be easily reduced. Some cannot.
- 39 SIs for #9 family => 17 MIs.
- 175 SIs for #33 family => 10 Mis.

gg→HH @NLO with finite top mass

- For each integral family, 2-3 serious master integrals.
- 44*3*30s ~ 1hour for each PS point.
- PS integral could utilize MPI technique.
- 300nodes*12cores*24hours*30days ~250k points.
- Quasi-Monte-Carlo algorithm for PS integral needs O(10k) points for 0.1% integration accuracy.

750GeV resonance @ 13TeV LHC

750GeV production via gluon fusion

Conclusion & Prospect

- Large Mt approximation is not suitable for Higgs associated production investigation.
- For the first time, we present the results of two-loop master integrals for gg→HH with finite top quark mass.
- Our improved numerical algorithm can obtain results with reasonable accuracy in acceptible time for complete gg->HH@NLO (two-loop) with finite top mass.

Conclusion & Prospect

- H+j @ NLO and beyond with finite top mass
- HH @ NNLO with finite top mass
- e+e-=>HZ @ CEPC EW+QCD correction
- X750 production via GF && its decay
- Single top @ NNLO
- At HL-LHC & SPPC, ttH @ NNLO

•

Thank You